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e Peridynamics background

» States, horizon
* Rescaling a material model (at a point)
* Variable length scale (over a region)
* Partial stress

* Local-nonlocal coupling examples




Peridynamics basics: ) s
The nature of internal forces

Standard theory Peridynamics
Stress tensor field Bond forces within small neighborhoods
(assumes contact forces and (allow discontinuity)

smooth deformation)

Horizon 6
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Internal surface
H, = Family of x

pii(x,t) = V- o(x, ) + b(x, 1) pii(x, £) = ] F(@,0)dV, + b(x, )
Hy

Differentiation of contact forces

Summation over bond forces
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Peridynamics basics:
Deformation state and force state

=

* The deformation state maps each bond to its deformed image.

Y[x[{q —x) = y(q) —y(x)

* The force state maps bonds to bond forces according to the constitutive model.

f(q,x) =T[x{q — x) — T[ql{x — q)

* The constitutive model maps deformation states to force states.

Tlx] = T(Y[x]) Tlql = T(Y[q])




Scaling of a material model ) g
at a point

Let € and & be two horizons. Denote by ¢, and é5 bonds within each family.
Suppose we have a material model with horizon €. Find a rescaled model with §.
Map the bonds (undeformed and deformed):

Se _ %5 YelSe)  Y5(és)

e & € )

Require

We(Ye) = Ws(Ys)
It follows from definition of Frechet derivative that the force state scales according
to

eMIT (Y ) (&) = 6 1 T5(Ys)(Es)

@ Ye <€ > Y6
—_> _ —_
Same strain energy
density

Material with horizon €

Material with horizon §




Rescaling works fine if the horizon is@ &:.
independent of position

= Example: uniform strain in a 1D homogeneous bar (d = 1, F = constant):
y=Fx
= |f we scale the material model as derived above:
€’ T (F)(&e) = 8°Ts(F){&s)

we are assured that the strain energy density and Young’s modulus are independent
of horizon.

= Also the peridynamic equilibrium equation is satisfied.

N
u

€ material

™~

Solution u(x)

6 material E




Variable horizon: the problem ) .

Same example: uniform strain in a 1D homogeneous bar
y = Fx

Sete =1, define Z(F) = T, (F).

Let the horizon be given by §(x). The scaled force state is

TIxl(E) = 6-2(x)Z <%>

From the previous discussion, we know W is independent of x.

There’s just one problem: this deformation isn’t a minimizer of energy.
= Thatis, the uniform strain deformation is not in equilibrium.

_______ I

6 (x) material

™ solution u(x)

A Prescribed horizon &(x)
u : / < '
a

b




Origin of artifacts ) .

= The peridynamic force density operator L(x) involves the force state not only at x
but also the force states at all points within the horizon.

0 =L(x)+b, L(x) = j {Ts[x1{q — x) — Tsp[q){x — q)}dq

so simply scaling the material model at x is not sufficient.

§(x) ( ‘ 5(q)

Variable horizon




“Patch test” requirement for a ke
coupling method

" |n a deformation of the form

y(x) =a+ Fx
where H is a constant and the material model is of the form

T[x)(¢) = 672 (x)Z(¢ /5 (x))
where 6 (x) is a prescribed function and Z is a state that depends only on F, we require

L(x) =0 forallx.

A Prescribed horizon &(x)
u : / f :
a

,_Jlub
1

; Solution u(x)i

b
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Peridynamic stress tensor

= Define the 1D peridynamic stress tensor field* by

o(x) = j j (Tlx — y)y +w) — Tlx + yl(—y — w)} dy dz
0 0

= |dentity:

d co
T=| ome-x0 -l - adg

= u(x) is the force per unit area carried by all the bonds that cross x.

Tlx —yKy +w)

S

*R. B. Lehoucq & SS, “Force flux and the peridynamic stress tensor,” JMPS (2008)
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Partial stress field

= Under our assumption that

T[x](§) = 672(x)Z(§ /8 (x))

one computes directly that

0o (x): = j ETIx1(E) dE = j £2(8) dé

which is independent of x, so dv,/dx = 0.

" Y, is called the partial stress field.

= (Clearly the internal force density field computed from
Lo(x) == dvy/dx

passes the “patch test.”

= This observation leads to the following idea...



Concept for coupling method

h

= |dea: within a coupling region in which § is changing, compute the internal force

density from

L) =22 (x), vo(x): = [ ET[x](E) d§

instead of the full PD nonlocal integral.

= Here, T[x](x) is determined from whatever the deformation happens to be near x.

= Z isno longer involved.

= The material model has not changed from full PD, but the way of computing L

has.
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Local-nonlocal coupling idea

Local region Transition region Nonlocal region
d d
L0 =2 L) = 2 LG) = [TxIE) = Tl + 61~ dg

N

Full peridynamic (PD)

vo(x) = j ETIx1(E) dé

A

v (x) = a(F(x))

Partial stress
(PS)

Horizon & (x)

Good old-fashioned
local stress

Position x
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Continuum patch test results

* Full PD shows artifacts, as expected.
PS shows no artifacts, as promised.

Horizon Strain
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Continuum patch test with coupling

* No artifacts with PD-PS coupling (this was hoped for but not guaranteed).

delta

Horizon Strain

X16°

.08

.06

.04

PS/EPDE\ PS

.02

.00

0.98 r

0.986

0.94 -

o O [} [} [} Lo T e N = L e -
. . . . . . . . . B .

0.92

.
—_ O - ha &) kS LS B e o © O -

|
o
.

. . 0.90
-10 -6 =2 2 6 10 -10 -6 =2 2 6 10




Sandia
'i' National
Laboratories

Pulse propagation test problem

* Does our coupling method work for dynamics as well as statics with variable horizon?

delta
SR | E— T —
1.0 7 : o
o5t pp PS Local-nonlocal transition
0.8 i region has width 1
0.7 | -l
8 = 1 (nonlocal) - 0'6 i ; /
o !
N5t !
s |
T %47 8§ = 0.01 (in effect local)
0.3 r
0.2
0.1 /
0.0 fm======s-mm-m------SEeeeeese e oo e
_O'I 1 1 1 1 1 1 1 1 1 1 1
-20 =15 =10 =5 0 S5 10 135 20
Force b x
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Free boundary
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Pulse propagation test results

*  Movies of strain field evolution

Full PD everywhere Coupled PD-PS
L] Sir—qlir| T T T T T T T T T T T T T L] 4 Sir—qlirI T T T T T T T T T T T T T T
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Pulse propagation test results

e Strain field: no artifacts appear in the coupled model the local-nonlocal transition.

Full PD everywhere Coupled PD-PS
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Discussion

* The partial stress approach may provide a means for local-nonlocal coupling

within the continuum equations.
e Uses the underlying peridynamic material model but modifies the way

internal force density is computed.
* Expected to workin 2D & 3D, linear & nonlinear.
e PSisinconsistent from an energy minimization point of view.
* Not suitable for a full-blown theory of mechanics and thermodynamics
(as full PD is).
* Not yet clear what implications this may have in practice.
* We still need to use full PD for crack progression.




Extra slides




Purpose of peridynamics .

e To unify the mechanics of continuous and discontinuous media within a single, consistent
set of equations.

Continuous body
with a defect

Discrete particles

Continuous body

e Why do this? Develop a mathematical framework that help in modeling...
* Discrete-to-continuum coupling
iy L AU S B

e Cracking, including complex fracture patterns - o
 Communication across length scales. &

Figure 11.20 Pull-out: (a) schematic diagram; (b) fracture surface of ‘Silceram’
glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D.
Rawlings.)




Peridynamic vs. local equations 1) .

State notation: State(bond) = vector

Relation Peridynamic theory Standard theory
Kinematics Y{q-x) = y(a) - y(x) F(x) = X (x
X

Linear momentum | ;5 (x) — / (t(q, X) — t(x,q)) dVy+b(x) | PY(X)=V-0o(x)+b(x)
H

balance
Constitutive model t(q,x) = T{q — x), T = i(X) o=o(F)
Angular momentum / Y(q—x) x T(q —x) dVy = 0 o— o’
balance H
Elasticity T = Wy (Fréchet derivative) o = Wr (tensor gradient)
First law ézloi\—l—q—i—r t=ag-F+q+r

N

TeY — /H T(e) Y(€) dVe




